Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
J Ethnopharmacol ; 328: 118007, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38492791

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Rosa damascena is an ancient plant with significance in both medicine and perfumery that have a variety of therapeutic properties, including antidepressant, anti-anxiety, and anti-stress effects. Rose damascena essential oil (REO) has been used to treat depression, anxiety and other neurological related disorders in Iranian traditional medicine. However, its precise mechanism of action remains elusive. AIM OF THE STUDY: The aim of this study was to investigate the impact and mechanism underlying the influence of REO on chronic unpredictable mild stress (CUMS) rats. MATERIALS AND METHODS: Gas chromatography-mass spectrometry (GC-MS) technique coupling was used to analyze of the components of REO. A CUMS rat model was replicated to assess the antidepressant effects of varying doses of REO. This assessment encompassed behavioral evaluations, biochemical index measurements, and hematoxylin-eosin staining. For a comprehensive analysis of hippocampal tissues, we employed transcriptomics and incorporated weighting coefficients by means of network pharmacology. These measures allowed us to explore differentially expressed genes and biofunctional pathways affected by REO in the context of depression treatment. Furthermore, GC-MS metabolomics was employed to assess metabolic profiles, while a joint analysis in Metscape facilitated the construction of a network elucidating the links between differentially expressed genes and metabolites, thereby elucidating potential relationships and clarifying key pathways regulated by REO. Finally, the expression of relevant proteins in the key pathways was determined through immunohistochemistry and Western blot analysis. Molecular docking was utilized to investigate the interactions between active components and key targets, thereby validating the experimental results. RESULTS: REO alleviated depressive-like behavior, significantly elevated levels of the neurotransmitter 5-hydroxytryptamine (5-HT), and reduced hippocampal neuronal damage in CUMS rats. This therapeutic effect may be associated with the modulation of the serotonergic synapse signaling pathway. Furthermore, REO rectified metabolic disturbances, primarily through the regulation of amino acid metabolic pathways. Joint analysis revealed five differentially expressed genes (EEF1A1, LOC729197, ATP8A2, NDST4, and GAD2), suggesting their potential in alleviating depressive symptoms by modulating the serotonergic synapse signaling pathway and tryptophan metabolism. REO also modulated the 5-HT2A-mediated extracellular regulated protein kinases-cAMP-response element binding protein-brain-derived neurotrophic factor (ERK-CREB-BDNF) pathway. In addition, molecular docking results indicated that citronellol, geraniol and (E,E)-farnesol in REO may serve as key active ingredients responsible for its antidepressant effects. CONCLUSIONS: This study is the first to report that REO can effectively alleviate CUMS-induced depression-like effects in rats. Additionally, the study offers a comprehensive understanding of its intricate antidepressant mechanism from a multi-omics and multi-level perspective. Our findings hold promise for the clinical application and further development of this essential oil.


Subject(s)
Rosa , Rats , Animals , Serotonin/metabolism , Iran , Molecular Docking Simulation , Rats, Sprague-Dawley , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression/metabolism , Signal Transduction , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Synapses/metabolism , Stress, Psychological/drug therapy , Hippocampus , Disease Models, Animal
2.
Phytother Res ; 38(5): 2496-2517, 2024 May.
Article in English | MEDLINE | ID: mdl-38447978

ABSTRACT

We investigated the mechanism by which quercetin preserves mitochondrial quality control (MQC) in cardiomyocytes subjected to ischemia-reperfusion stress. An enzyme-linked immunosorbent assay was employed in the in vivo experiments to assess myocardial injury markers, measure the transcript levels of SIRT5/DNAPK-cs/MLKL during various time intervals of ischemia-reperfusion, and observe structural changes in cardiomyocytes using transmission electron microscopy. In in vitro investigations, adenovirus transfection was employed to establish a gene-modified model of DNA-PKcs, and primary cardiomyocytes were obtained from a mouse model with modified SIRT5 gene. Reverse transcription polymerase chain reaction, laser confocal microscopy, immunofluorescence localization, JC-1 fluorescence assay, Seahorse energy analysis, and various other assays were applied to corroborate the regulatory influence of quercetin on the MQC network in cardiomyocytes after ischemia-reperfusion. In vitro experiments demonstrated that ischemia-reperfusion injury caused changes in the structure of the myocardium. It was seen that quercetin had a beneficial effect on the myocardial tissue, providing protection. As the ischemia-reperfusion process continued, the levels of DNA-PKcs/SIRT5/MLKL transcripts were also found to change. In vitro investigations revealed that quercetin mitigated cardiomyocyte injury caused by mitochondrial oxidative stress through DNA-PKcs, and regulated mitophagy and mitochondrial kinetics to sustain optimal mitochondrial energy metabolism levels. Quercetin, through SIRT5 desuccinylation, modulated the stability of DNA-PKcs, and together they regulated the "mitophagy-unfolded protein response." This preserved the integrity of mitochondrial membrane and genome, mitochondrial dynamics, and mitochondrial energy metabolism. Quercetin may operate synergistically to oversee the regulation of mitophagy and the unfolded protein response through DNA-PKcs-SIRT5 interaction.


Subject(s)
Myocytes, Cardiac , Quercetin , Sirtuins , Quercetin/pharmacology , Animals , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Mice , Sirtuins/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Oxidative Stress/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , DNA-Activated Protein Kinase/metabolism , Male , Mice, Inbred C57BL , Mitophagy/drug effects
3.
Chin J Integr Med ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329655

ABSTRACT

Acute myocardial infarction (AMI), characterized by high incidence and mortality rates, poses a significant public health threat. Reperfusion therapy, though the preferred treatment for AMI, often exacerbates cardiac damage, leading to myocardial ischemia/reperfusion injury (MI/RI). Consequently, the development of strategies to reduce MI/RI is an urgent priority in cardiovascular therapy. Chinese medicine, recognized for its multi-component, multi-pathway, and multi-target capabilities, provides a novel approach for alleviating MI/RI. A key area of interest is the nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. This pathway is instrumental in regulating inflammatory responses, oxidative stress, apoptosis, endoplasmic reticulum stress, and ferroptosis in MI/RI. This paper presents a comprehensive overview of the Nrf2/HO-1 signaling pathway's structure and its influence on MI/RI. Additionally, it reviews the latest research on leveraging Chinese medicine to modulate the Nrf2/HO-1 pathway in MI/RI treatment.

4.
Biomed Pharmacother ; 159: 114171, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36641924

ABSTRACT

Mitochondrial dysfunction is the main cause of damage to the pathological mechanism of ischemic cardiomyopathy. In addition, mitochondrial dysfunction can also affect the homeostasis of cardiomyocytes or endothelial cell dysfunction, leading to a vicious cycle of mitochondrial oxidative stress. And mitochondrial dysfunction is also an important pathological basis for ischemic cardiomyopathy and reperfusion injury after myocardial infarction or end-stage coronary heart disease. Therefore, mitochondria can be used as therapeutic targets against myocardial ischemia injury, and the regulation of mitochondrial morphology, function and structure is a key and important way of targeting mitochondrial quality control therapeutic mechanisms. Mitochondrial quality control includes mechanisms such as mitophagy, mitochondrial dynamics (mitochondrial fusion/fission), mitochondrial biosynthesis, and mitochondrial unfolded protein responses. Among them, the increase of mitochondrial fragmentation caused by mitochondrial pathological fission is the initial factor. The protective mitochondrial fusion can strengthen the interaction and synthesis of paired mitochondria and promote mitochondrial biosynthesis. In ischemia or hypoxia, pathological mitochondrial fission can promote the formation of mitochondrial fragments, fragmented mitochondria can lead to damaged mitochondrial DNA production, which can lead to mitochondrial biosynthesis dysfunction, insufficient mitochondrial ATP production, and mitochondrial ROS. Burst growth or loss of mitochondrial membrane potential. This eventually leads to the accumulation of damaged mitochondria. Then, under the leadership of mitophagy, damaged mitochondria can complete the mitochondrial degradation process through mitophagy, and transport the morphologically and structurally damaged mitochondria to lysosomes for degradation. But once the pathological mitochondrial fission increases, the damaged mitochondria increases, which may activate the pathway of cardiomyocyte death. Although laboratory studies have found that a variety of mitochondrial-targeted drugs can reduce myocardial ischemia and protect cardiomyocytes, there are still few drugs that have successfully passed clinical trials. In this review, we describe the role of MQS in ischemia/hypoxia-induced cardiomyocyte physiopathology and elucidate the relevant mechanisms of mitochondrial dysfunction in ischemic cardiomyopathy. In addition, we also further explained the advantages of natural products in improving mitochondrial dysfunction and protecting myocardial cells from the perspective of pharmacological mechanism, and explained its related mechanisms. Potential targeted therapies that can be used to improve MQS under ischemia/hypoxia are discussed, aiming to accelerate the development of cardioprotective drugs targeting mitochondrial dysfunction.


Subject(s)
Cardiomyopathies , Drugs, Chinese Herbal , Mitochondrial Diseases , Myocardial Infarction , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Hypoxia , Cardiomyopathies/drug therapy
5.
Phytomedicine ; 108: 154502, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36274412

ABSTRACT

BACKGROUND: TYHX-Tongyang Huoxue decoction has been used clinically for nearly 40 years. The ingredients of TYHX are Radix Astragali (Huangqi), Red Ginseng (Hongshen), Rehmannia Glutinosa (Dihuang), Common Yam Rhizome (Shanyao) and Cassia-bark-tree Bark (Rougui). Our previous experiments confirmed that TYHX can protect sinoatrial node cells. However, its mechanism of action is not completely understood yet. PURPOSE: The present study aimed to determine the protective effects of TYHX against Sinus node cell injury under hypoxic stress and elucidate the underlying mechanisms of protection. METHODS: Through RNA sequencing analysis and network pharmacology analysis, we found significant differences in mitochondrial-related genes before and after hypoxia-mimicking SNC, resolved the main regulatory mechanism of TYHX. Through the intervention of TYHX on SNC, a series of detection methods such as laser confocal, fluorescence co-localization, mitochondrial membrane potential and RT-PCR. The regulatory effect of TYHX on ß-tubulin in sinoatrial node cells was verified by in vitro experiments. The mechanism of action of TYHX and its active ingredient quercetin to maintain mitochondrial homeostasis and protect sinoatrial node cells through mitophagy, mitochondrial fusion/fission and mitochondrial biosynthesis was confirmed. RESULTS: Through RNA sequencing analysis, we found that there were significant differences in mitochondrial related genes before and after SNC was modeled by hypoxia. Through pharmacological experiments, we showed that TYHX could inhibit the migration of Drp1 to mitochondria, inhibit excessive mitochondrial fission, activate mitophagy and increase the mitochondrial membrane potential. These protective effects were mainly mediated by ß-tubulin. Furthermore, the active component quercetin in TYHX could inhibit excessive mitochondrial fission through SIRT1, maintain mitochondrial energy metabolism and protect SNCs. Our results showed that protection of mitochondrial function through the maintenance of ß-tubulin and activation of SIRT1 is the main mechanism by which TYHX alleviates hypoxic stress injury in SNCs. The regulatory effects of TYHX and quercetin on mitochondrial quality surveillance are also necessary. Our findings provide empirical evidence supporting the use of TYHX as a targeted treatment for sick sinus syndrome. CONCLUSION: Our data indicate that TYHX exerts protective effects against sinus node cell injury under hypoxic stress, which may be associated with the regulation of mitochondrial quality surveillance (MQS) and inhibition of mitochondrial homeostasis-mediated apoptosis.


Subject(s)
Drugs, Chinese Herbal , Sirtuin 1 , Tubulin , Humans , Hypoxia , Mitochondria , Quercetin/pharmacology , Sinoatrial Node/cytology , Sinoatrial Node/metabolism , Sirtuin 1/metabolism , Tubulin/metabolism , Drugs, Chinese Herbal/pharmacology
6.
Oxid Med Cell Longev ; 2022: 9205908, 2022.
Article in English | MEDLINE | ID: mdl-35401934

ABSTRACT

Myocardial fibrosis refers to the pathological changes of heart structure and morphology caused by various reasons of myocardial damage. It has become an important challenge in the later clinical treatment of acute myocardial infarction/ischemic cardiomyopathy or diabetes complicated with heart failure. Ginseng Dingzhi Decoction (GN), a Chinese herbal medicine, can reduce heart failure and protect cardiomyocytes. We infer that this may be related to the interaction with intestinal microbiota and mitochondrial homeostasis. The regulatory mechanism of GN on gut microbiota and mitochondria has not yet been elucidated. The intestinal microbiota was analyzed by the 16S rRNA gene; the fecal samples were sequenced and statistically analyzed to determine the changes of microbiota in the phenotype of heart failure rats. In addition, GN can regulate the microbial population that increases the proportion of short-chain fatty acids and anti-inflammatory bacteria and reduces the proportion of conditional pathogens to diabetic phenotype. The results suggest that GN may improve myocardial injury by regulating intestinal flora. Our data also show that stress-type heart failure caused by TAC (transverse aortic constriction) is accompanied by severe cardiac hypertrophy, reduced cardiac function, redox imbalance, and mitochondrial dysfunction. However, the use of GN intervention can significantly reduce heart failure and myocardial hypertrophy, improve heart function and improve myocardial damage, and maintain the mitochondrial homeostasis and redox of myocardial cells under high glucose stimulation. Interestingly, through in vitro experiments after TMBIM6 siRNA treatment, the improvement effect of GN on cell damage and the regulation of mitochondrial homeostasis were eliminated. TMBIM6 can indirectly regulate mitophagy and mitochondrial homeostasis to attenuate myocardial damage and confirms the regulatory effect of GN on mitophagy and mitochondrial homeostasis. We further intervened cardiomyocytes in high glucose through metformin (MET) and GN combination therapy. Research data show that MET and GN combination therapy can improve the level of mitophagy and protect cardiomyocytes. Our findings provide novel mechanistic insights for the treatment of diabetes combined with myocardial injury (myocardial fibrosis) and provide a pharmacological basis for the study of the combination of Chinese medicine and conventional diabetes treatment drugs.


Subject(s)
Cardiomyopathies , Gastrointestinal Microbiome , Heart Failure , Panax , Animals , Apoptosis Regulatory Proteins/metabolism , Cardiomegaly/pathology , Cardiomyopathies/metabolism , Fibrosis , Glucose/metabolism , Heart Failure/pathology , Medicine, Chinese Traditional , Membrane Proteins/metabolism , Mitochondria , Myocytes, Cardiac/metabolism , RNA, Ribosomal, 16S/genetics , Rats
7.
Biomed Pharmacother ; 146: 112550, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34959116

ABSTRACT

Coronavirus is a family of viruses that can cause diseases such as the common cold, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). The universal outbreak of coronavirus disease 2019 (COVID-19) caused by SARS coronaviruses 2 (SARS-CoV-2) has become a global pandemic. The ß-Coronaviruses, which caused SARS-CoV-2 (COVID-19), have spread in more than 213 countries, infected over 81 million people, and caused more than 1.79 million deaths. COVID-19 symptoms vary from mild fever, flu to severe pneumonia in severely ill patients. Difficult breathing, acute respiratory distress syndrome (ARDS), acute kidney disease, liver damage, and multi-organ failure ultimately lead to death. Researchers are working on different pre-clinical and clinical trials to prevent this deadly pandemic by developing new vaccines. Along with vaccines, therapeutic intervention is an integral part of healthcare response to address the ongoing threat posed by COVID-19. Despite the global efforts to understand and fight against COVID-19, many challenges need to be addressed. This article summarizes the current pandemic, different strains of SARS-CoV-2, etiology, complexities, surviving medications of COVID-19, and so far, vaccination for the treatment of COVID-19.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/genetics , Genetic Variation/genetics , SARS-CoV-2/genetics , Vaccination/trends , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/genetics , Antiviral Agents/administration & dosage , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Disease Outbreaks/prevention & control , Humans , Medicine, Chinese Traditional/trends , Vaccination/methods , COVID-19 Drug Treatment
8.
Oxid Med Cell Longev ; 2021: 5876841, 2021.
Article in English | MEDLINE | ID: mdl-34603599

ABSTRACT

Myocardial fibrosis represents the primary pathological change associated with diabetic cardiomyopathy and heart failure, and it leads to decreased myocardial compliance with impaired cardiac diastolic and systolic function. Quercetin, an active ingredient in various medicinal plants, exerts therapeutic effects against cardiovascular diseases. Here, we investigate whether SIRT5- and IDH2-related desuccinylation is involved in the underlying mechanism of myocardial fibrosis in heart failure while exploring related therapeutic drugs for mitochondrial quality surveillance. Mouse models of myocardial fibrosis and heart failure, established by transverse aortic constriction (TAC), were administered with quercetin (50 mg/kg) daily for 4 weeks. HL-1 cells were pretreated with quercetin and treated with high glucose (30 mM) in vitro. Cardiac function, western blotting, quantitative PCR, enzyme-linked immunosorbent assay, and immunofluorescence analysis were employed to analyze mitochondrial quality surveillance, oxidative stress, and inflammatory response in myocardial cells, whereas IDH2 succinylation levels were detected using immunoprecipitation. Myocardial fibrosis and heart failure incidence increased after TAC, with abnormal cardiac ejection function. Following high-glucose treatment, HL-1 cell activity was inhibited, causing excess production of reactive oxygen species and inhibition of mitochondrial respiratory complex I/III activity and mitochondrial antioxidant enzyme activity, as well as increased oxidative stress and inflammatory response, imbalanced mitochondrial quality surveillance and homeostasis, and increased apoptosis. Quercetin inhibited myocardial fibrosis and improved cardiac function by increasing mitochondrial energy metabolism and regulating mitochondrial fusion/fission and mitochondrial biosynthesis while inhibiting the inflammatory response and oxidative stress injury. Additionally, TAC inhibited SIRT5 expression at the mitochondrial level and increased IDH2 succinylation. However, quercetin promoted the desuccinylation of IDH2 by increasing SIRT5 expression. Moreover, treatment with si-SIRT5 abolished the protective effect of quercetin on cell viability. Hence, quercetin may promote the desuccinylation of IDH2 through SIRT5, maintain mitochondrial homeostasis, protect mouse cardiomyocytes under inflammatory conditions, and improve myocardial fibrosis, thereby reducing the incidence of heart failure.


Subject(s)
Glucose/pharmacology , Mitochondria, Heart/drug effects , Protective Agents/pharmacology , Quercetin/pharmacology , Sirtuins/metabolism , Animals , Cell Survival/drug effects , Disease Models, Animal , Energy Metabolism/drug effects , Heart Failure/drug therapy , Heart Failure/metabolism , Heart Failure/pathology , Male , Mice , Mice, Inbred C57BL , Mitochondria, Heart/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxidative Stress/drug effects , Protective Agents/therapeutic use , Quercetin/therapeutic use , Reactive Oxygen Species/metabolism
9.
Biomed Pharmacother ; 143: 112164, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34649335

ABSTRACT

Resveratrol (RV) is a well-known polyphenolic compound in various plants, including grape, peanut, and berry fruits, which is quite famous for its association with several health benefits such as anti-obesity, cardioprotective neuroprotective, antitumor, antidiabetic, antioxidants, anti-age effects, and glucose metabolism. Significantly, promising therapeutic properties have been reported in various cancer, neurodegeneration, and atherosclerosis and are regulated by several synergistic pathways that control oxidative stress, cell death, and inflammation. Similarly, RV possesses a strong anti-adipogenic effect by inhibiting fat accumulation processes and activating oxidative and lipolytic pathways, exhibiting their cardioprotective effects by inhibiting platelet aggregation. The RV also shows significant antibacterial effects against various food-borne pathogens (Listeria, Campylobacter, Staphylococcus aureus, and E. coli) by inhibiting an electron transport chain (ETC) and F0F1-ATPase, which decreases the production of cellular energy that leads to the spread of pathogens. After collecting and analyzing scientific literature, it may be concluded that RV is well tolerated and favorably affects cardiovascular, neurological, and diabetic disorders. As such, it is possible that RV can be considered the best nutritional additive and a complementary drug, especially a therapeutic candidate. Therefore, this review would increase knowledge about the blend of RV as well as inspire researchers around the world to consider RV as a pharmaceutical drug to combat future health crises against various inhumane diseases. In the future, this article will be aware of discoveries about the potential of this promising natural compound as the best nutraceuticals and therapeutic drugs in medicine.


Subject(s)
Dietary Supplements , Phytochemicals/therapeutic use , Resveratrol/therapeutic use , Animals , Dietary Supplements/adverse effects , Humans , Patient Safety , Phytochemicals/adverse effects , Phytochemicals/pharmacokinetics , Resveratrol/adverse effects , Resveratrol/pharmacokinetics , Risk Assessment
10.
Chin Med ; 16(1): 107, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34674715

ABSTRACT

BACKGROUND: Lily Bulb and Rehmannia Decoction (LBRD), is a traditional Chinese formula that has been shown to be safe and effective against depression; however, its material basis and pharmacological mechanisms remain unknown. METHODS: Here, ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) and high-performance liquid chromatography (HPLC) were used to identify the chemical spectrum and qualitatively identify the major active ingredients in the LBRD standard decoction, respectively. Subsequently, we assessed the behavior, neuronal function and morphology, neurotransmitter levels, hypothalamic-pituitary-adrenal (HPA)-axis associated hormones, inflammatory cytokine levels, and miRNA/mRNA expression alterations in an in vitro/vivo depression model treated by the LBRD standard decoction. Finally, miRNA/mRNA regulatory networks were created through bioinformatics analysis, followed by functional experiments to verify its role in LBRD standard decoction treatment. RESULTS: A total of 32 prototype compounds were identified in the LBRD standard decoction, and the average quality of verbascoside in the fresh lily bulb decoction, fresh raw Rehmannia juice, and the LBRD standard decoction were 0.001264%, 0.002767%, and 0.009046% (w/w), respectively. Administration of the LBRD standard decoction ameliorated chronic unpredictable mild stress (CUMS)-induced depression-like phenotypes and protected PC12 cells against chronic corticosterone (CORT)-induced injury. The levels of neurotransmitter, cytokine, stress hormones and neuronal morphology were disrupted in the depression model, while LBRD standard decoction could work on these alterations. After LBRD standard decoction administration, four differentially expressed miRNAs, rno-miR-144-3p, rno-miR-495, rno-miR-34c-5p, and rno-miR-24-3p, and six differentially expressed mRNAs, Calml4, Ntrk2, VGAT, Gad1, Nr1d1, and Bdnf overlapped in the in vivo/vitro depression model. Among them, miR-144-3p directly mediated GABA synthesis and release by targeting Gad1 and VGAT, and miR-495 negatively regulated BDNF expression. The LBRD standard decoction can reverse the above miRNA/mRNA network-mediated GABA and BDNF expression in the in vivo/vitro depression model. CONCLUSION: Collectively, the multi-components of the LBRD standard decoction altered a series of miRNAs in depression through mediating GABAergic synapse, circadian rhythm, and neurotrophic signaling pathway etc., thereby abolishing inhibitory/excitatory neurotransmitter deficits, recovering the pro-/anti-inflammatory cytokine levels and regulating the HPA-axis hormone secretion to achieve balance of the physiological function of the whole body.

11.
Oxid Med Cell Longev ; 2021: 3154501, 2021.
Article in English | MEDLINE | ID: mdl-34422207

ABSTRACT

Sick sinus syndrome (SSS) is a disease with bradycardia or arrhythmia. The pathological mechanism of SSS is mainly due to the abnormal conduction function of the sinoatrial node (SAN) caused by interstitial lesions or fibrosis of the SAN or surrounding tissues, SAN pacing dysfunction, and SAN impulse conduction accompanied by SAN fibrosis. Tongyang Huoxue Decoction (TYHX) is widely used in SSS treatment and amelioration of SAN fibrosis. It has a variety of active ingredients to regulate the redox balance and mitochondrial quality control. This study mainly discusses the mechanism of TYHX in ameliorating calcium homeostasis disorder and redox imbalance of sinoatrial node cells (SANCs) and clarifies the protective mechanism of TYHX on the activity of SANCs. The activity of SANCs was determined by CCK-8 and the TUNEL method. The levels of apoptosis, ROS, and calcium release were analyzed by flow cytometry and immunofluorescence. The mRNA and protein levels of calcium channel regulatory molecules and mitochondrial quality control-related molecules were detected by real-time quantitative PCR and Western Blot. The level of calcium release was detected by laser confocal. It was found that after H/R treatment, the viability of SANCs decreased significantly, the levels of apoptosis and ROS increased, and the cells showed calcium overload, redox imbalance, and mitochondrial dysfunction. After treatment with TYHX, the cell survival level was improved, calcium overload and oxidative stress were inhibited, and mitochondrial energy metabolism and mitochondrial function were restored. However, after the SANCs were treated with siRNA (si-ß-tubulin), the regulation of TYHX on calcium homeostasis and redox balance was counteracted. These results suggest that ß-tubulin interacts with the regulation of mitochondrial function and calcium release. TYHX may regulate mitochondrial quality control, maintain calcium homeostasis and redox balance, and protect SANCs through ß-tubulin. The regulation mechanism of TYHX on mitochondrial quality control may also become a new target for SSS treatment.


Subject(s)
Calcium/physiology , Drugs, Chinese Herbal/pharmacology , Hypoxia/physiopathology , Mitochondria/drug effects , Oxygen/metabolism , Sinoatrial Node/drug effects , Animals , Calcium Signaling , Homeostasis , Mitochondria/metabolism , Mitochondria/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidation-Reduction , Rabbits , Sinoatrial Node/metabolism , Sinoatrial Node/pathology
12.
Front Pharmacol ; 12: 791049, 2021.
Article in English | MEDLINE | ID: mdl-35145403

ABSTRACT

Health consciousness and increased knowledge about the side effects of synthetic drugs have enhanced interest in traditional medicines. Medicinal plants offer cures for various diseases, leading to improved living standards. This has brought ethnomedicinal studies into the spotlight and increased demand for herb-based medicines. Citrullus colocynthis is an herbaceous plant containing an abundance of nutrients that play a key role in the improvement of wellbeing. C. colocynthis has many biological properties, such as antioxidative, hypoglycemic, antibacterial, anti-cancerous, anti-inflammatory, analgesic, gastrointestinal tract, reproduction, protection, anti-microbial, antidiabetic, hypolipidemic, antineoplastic, profibrinolytic, anti-allergic, pesticidal, and immune-stimulatory. There are numerous bioactive compounds like cucurbitacin, flavonoids, and polyphenols in C. colocynthis that give it medicinal properties. Herein, we have extensively compiled, reviewed, and analyzed significant information on C. colocynthhis from the best published available evidence in PubMed, Scopus (Embase), Web of Science (Web of Knowledge), Cochrane Library, and Google Scholar, etc. Scientific literature evidenced that owing to the bioactive constituents, including cucurbitacin, polyphenols, flavonoids, and other potent molecules, C. colocynthis has many pharmacological and physiological functions. It possesses multi-beneficial applications in treating various disorders of humans and animals. So, the primary purpose of this comprehensive review is to provide an overview of the findings of positive impacts and risks of C. colocynthis consumption on human health, especially in poultry and veterinary fields. In the future, this narrative article will be aware of discoveries about the potential of this promising natural fruit and its bioactive compounds as the best nutraceuticals and therapeutic drugs in veterinary and human medicine.

14.
Oxid Med Cell Longev ; 2020: 5430407, 2020.
Article in English | MEDLINE | ID: mdl-33062142

ABSTRACT

Oxidative stress (OS) refers to the physiological imbalance between oxidative and antioxidative processes leading to increased oxidation, which then results in the inflammatory infiltration of neutrophils, increased protease secretion, and the production of a large number of oxidative intermediates. Oxidative stress is considered an important factor in the pathogenesis of cardiovascular disease (CVD). At present, active components of Chinese herbal medicines (CHMs) have been widely used for the treatment of CVD, including coronary heart disease and hypertension. Since the discovery of artemisinin for the treatment of malaria by Nobel laureate Youyou Tu, the therapeutic effects of active components of CHM on various diseases have been widely investigated by the medical community. It has been found that various active CHM components can regulate oxidative stress and the circulatory system, including ginsenoside, astragaloside, and resveratrol. This paper reviews advances in the use of active CHM components that modulate oxidative stress, suggesting potential drugs for the treatment of various CVDs.


Subject(s)
Cardiovascular Diseases/pathology , Drugs, Chinese Herbal/pharmacology , Oxidative Stress/drug effects , AMP-Activated Protein Kinases/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Cardiovascular Diseases/drug therapy , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Ginsenosides/chemistry , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Humans , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Superoxide Dismutase/metabolism
15.
Article in English | MEDLINE | ID: mdl-32802135

ABSTRACT

OBJECTIVE: This study focuses on the role of Zishen Huoxue Decoction (ZSHX) in reducing mitochondrial membrane potential and reducing the proportion of apoptosis through the mTORC1 signaling pathway. METHODS: In our experiment, we first constructed an in vitro hypoxia/reoxygenation (H/R) model of H9C2 cells. Then, the cells were divided into control group, model group (hypoxia/reoxygenation, H/R), ZSHX, ZSHX + Rapa, low-dose ZSHX (100 µg/ml), and middle-dose ZSHX. High-dose ZSHX (400 µg/ml) group was treated with Zishen Huoxue Decoction (ZSHX). Western Blot was used to detect the expression of cell-related protein and RT-PCR was used to detect the expression of the cell-related gene in each group. Flow cytometry was used to assay for ROS content and the apoptotic ratio of H9C2 cells, Seahorse Live Cell Energy Meter was used to detect the Mitochondrial Respiratory Function in H9C2 Cells, and confocal laser scanning was used to detect the mitochondrial membrane potential of H9C2 cells. RESULTS: Western Blot assay showed that the relative expression of mTOR and Raptor in the H/R group was significantly lower than that in the control group (n = 3, P < 0.05). The expression of mTOR and Raptor was upregulated and the relative expression of 4E-BP1 was downregulated in the middle- and high-dose ZSHX groups (n = 3, P < 0.05). In addition, the ROS content of H9C2 cells was detected by flow cytometry, showing the ROS synthesis in H/R group (78.31 + 6.14) higher than that in the control group (34.53 + 6.10) (n = 3, P < 0.01). The ROS value was increased significantly after rapamycin inhibited mTOR (66.18 (+4.03 vs. 52.31 (+6.01), n = 3, P < 0.05). The basal mitochondrial respiration and ATP production in H/R group were significantly lower than those in the control group (38.17 + 17.76); the mitochondrial leakage in H/R model group was significantly higher than that in the control group (H/R: 40.93 + 5.18 vs. Ctrl: 27.17 + 8.92, n = 4, P < 0.05). The apoptotic rate of cardiomyocytes in the H/R model group (70.91 + 4.57) was significantly higher than that in the control group (14.52 + 2.37, n = 3, P < 0.01), and Zishen Huoxue Decoction could decrease the apoptotic rate of hypoxic-reoxygenated cardiomyocytes (ZSHX: 18.24 + 4.17 vs. H/R: 78.91 + 3.48, n = 3, P < 0.01). CONCLUSION: ZSHX Decoction has the effects of activating mTORC1, inhibiting the overexpression of 4E-BP1, inhibiting fatty acid oxidation, protecting the respiratory function of mitochondria, reducing ROS and apoptosis, and thus protecting myocardial cells from injury.

16.
Z Naturforsch C J Biosci ; 73(3-4): 107-116, 2018 Feb 23.
Article in English | MEDLINE | ID: mdl-28787276

ABSTRACT

Di-Wu-Yang-Gan Granules is a Traditional Chinese Medicine prescription used for the treatment of HBeAg-negative chronic hepatitis B patients in China. It consists of five commonly used Chinese herbs. However, the chemical constituents of the whole prescription had not been clarified yet. Hence, in this study, the chemical profiling of Di-Wu-Yang-Gan Granules was explored by ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry, which can provide accurate molecular weight within 5-ppm error and sufficient MS/MS fragment ions without the need for precursor ion selection. As a result, 116 compounds were identified, including lignans, triterpenesaponins, flavonoids, coumarins, iridoids, nortriterpenoids, phenolic acids, and sesquiterpenes. All compounds were further assigned to the individual herbs. In conclusion, this established method was reliable and effective for the separation and identification of the constituents in Di-Wu-Yang-Gan Granules. The findings are beneficial for quality control of the prescription during production and provide helpful chemical information for exploring its efficacy and the mechanism of action. The fragmentation regularity summarized in this study also provided important information for the rapid identification of the chemical composition in herbal medicines or their prescription.


Subject(s)
Chromatography, Liquid/methods , Drugs, Chinese Herbal/chemistry , Mass Spectrometry/methods , Coumarins/analysis , Flavonoids/analysis , Iridoids/analysis , Lignans/analysis , Phenols/analysis , Sesquiterpenes/analysis
17.
Molecules ; 22(10)2017 Oct 17.
Article in English | MEDLINE | ID: mdl-29039793

ABSTRACT

The compatibility between Danggui (Angelicae Sinensis Radix) and Honghua (Carthami Flos) is a known herb pair, which could activate blood circulation and dissipate blood stasis effects. In this paper, we quantified seven main bio-active components (hydroxysafflor yellow A, caffeic acid, p-coumaric acid, kaempferol-3-O-rutinoside, ferulic acid, 3-n-butylphthalide, and ligustilide) in plasma samples in vivo by UPLC-TQ/MS method and investigatedwhether the pharmacokinetic (PK) behaviors of the seven components could be altered in blood stasis rats after oral administration of the Gui-Hong extracts. It was found that the Cmax and AUC0-t of these components in blood stasis rats had increasing tendency compared with normal rats. Most components in model and normal rats had significant difference in some pharmacokinetic parameters, which indicated that the metabolism enzymes and transporters involved in the metabolism and disposition of these bio-active componentsmay bealtered in blood stasis rats. This study was the first report about the pharmacokinetic investigation between normal and blood stasis rats after oral administrationof Gui-Hong extracts, and these results are important and valuable for better clinical applications of Gui-Hong herb pair and relatedTCM formulae.


Subject(s)
Biological Products/chemistry , Biological Products/pharmacokinetics , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Administration, Oral , Animals , Biological Products/administration & dosage , Biomarkers , Carthamus tinctorius/chemistry , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/administration & dosage , Female , Hematologic Tests , Mass Spectrometry , Molecular Structure , Quality Control , Rats , Sensitivity and Specificity
18.
Sci Rep ; 6: 30208, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27457884

ABSTRACT

Xin-Ke-Shu (XKS) is a traditional Chinese patent medicine used for treatment of coronary heart diseases in China. However, its mechanism of action is still unclear. In this paper, the mediation of XKS on the isoproterenol (ISO)-induced myocardial infarction (MI) rat were evaluated based on a tissue-targeted metabonomics in vitro/vivo. The result indicated that twelve metabolic pathways were involved in the therapeutic effect of XKS in vivo, where seven pathways were associated with the Ca(2+) overloading mechanism. In agreement with regulation on metabolic variations, XKS markedly reversed the over-expressions of three involved proteins including phospholipase A2 IIA (PLA2 IIA), calcium/calmodulin-dependent protein kinase II (CaMK II) and Pro-Caspase-3. The metabolic regulations of XKS on H9c2 cell also partially confirmed its metabolic effect. These metabolic characteristics in vitro/vivo and western blotting analysis suggested that XKS protected from MI metabolic perturbation major via inhibition of Ca(2+) overloading mechanism. Furthermore, 11 active ingredients of XKS exerted steady affinity with the three proteins through the molecular docking study. Our findings indicate that the metabonomics in vitro/vivo combined with western blotting analysis offers the opportunity to gain insight into the comprehensive efficacy of TCMs on the whole metabolic network.


Subject(s)
Calcium/metabolism , Drugs, Chinese Herbal/pharmacology , Heart/drug effects , Isoproterenol/toxicity , Medicine, Chinese Traditional , Myocardial Infarction/chemically induced , Myocardium/metabolism , Animals , Biomarkers/metabolism , Male , Metabolomics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Rats , Rats, Wistar
19.
Article in English | MEDLINE | ID: mdl-26540435

ABSTRACT

Chaihu-Shu-Gan-San (CSGS) is a classical traditional Chinese medicine formula for the treatment of depression. As one of the single herbs in CSGS, Bai-Shao displayed antidepressant effect. In order to explore the role of Bai-Shao towards the antidepressant effect of CSGS, the metabolic regulation and chemical profiles of CSGS with and without Bai-Shao (QBS) were investigated using metabonomics integrated with chemical fingerprinting. At first, partial least squares regression (PLSR) analysis was applied to characterize the potential biomarkers associated with chronic unpredictable mild stress (CUMS)-induced depression. Among 46 differential metabolites found in the ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-Q-TOF/MS) and (1)H NMR-based urinary metabonomics, 20 were significantly correlated with the preferred sucrose consumption observed in behavior experiments and were considered as biomarkers to evaluate the antidepressant effect of CSGS. Based on differential regulation on CUMS-induced metabolic disturbances with CSGS and QBS treatments, we concluded that Bai-Shao made crucial contribution to CSGS in the improvement of the metabolic deviations of six biomarkers (i.e., glutamate, acetoacetic acid, creatinine, xanthurenic acid, kynurenic acid, and N-acetylserotonin) disturbed in CUMS-induced depression. While the chemical constituents of Bai-Shao contributed to CSGS were paeoniflorin, albiflorin, isomaltopaeoniflorin, and benzoylpaeoniflorin based on the multivariate analysis of the UPLC-Q-TOF/MS chemical profiles from CSGS and QBS extracts. These findings suggested that Bai-Shao played an indispensable role in the antidepressant effect of CSGS.


Subject(s)
Antidepressive Agents/pharmacology , Depression/drug therapy , Drugs, Chinese Herbal/pharmacology , Metabolome/drug effects , Plant Extracts/chemistry , Analysis of Variance , Animals , Antidepressive Agents/chemistry , Antidepressive Agents/therapeutic use , Antidepressive Agents/urine , Behavior, Animal/drug effects , Biomarkers/analysis , Biomarkers/metabolism , Depression/metabolism , Disease Models, Animal , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Male , Paeonia/chemistry , Principal Component Analysis , Rats , Rats, Wistar , Stress, Psychological/drug therapy , Stress, Psychological/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL